Encoder Ottici vs Encoder Induttivi

Martedì, 03 Ottobre 2017

www.zettlex.com

Encoder Ottici vs Encoder Induttivi

Gli encoder ottici sono la scelta preferita dai produttori di macchinari sin dagli anni ‘70. Sono distribuiti da un alto numero di produttori e trovano spazio in una larga varietà di macchine industriali quali stampanti, macchine utensili CNC e robot. I tradizionali sensori di posizione induttivi, come resolver o LVDT, risalgono agli anni ’40 ma meno impiegati. Sono una valida alternativa se utilizzati in ambienti difficili come in abito aerospaziale, nella difesa, nel settore petrochimico, in situazioni tali che la loro robustezza e affidabilità fanno accettare il costo elevato il peso e la massa maggiore rispetto alle soluzioni ottiche. Tuttavia, un nuovo tipo di sensore induttivo sta guadagnando quote di mercato in molti settori, parliamo degli “incoder” che si possono considerare come una tecnologia ibrida tra ottico e induttivo. Disponendo di così tante e diverse tecnologie, per il progettista non è semplice fare una scelta ponderata. Questo articolo cerca di confrontare gli encoder ottici e induttivi esaminandone i pregi e le debolezze.

Cos’è un Encoder?

Va data innanzitutto una definizione di questo componente. Un encoder è un dispositivo che converte la posizione o il movimento in un segnale elettrico, solitamente con un codice digitale. Le definizioni sono molteplici infatti si parla di encoder rotanti, encoder angolari, sensori angolari, trasmettitori d’angolo. Per semplificare useremo il termine encoder che possono essere rotanti o lineari.

Una distinzione importante è se l’encoder sia assoluto o incrementale. In un encoder assoluto il segnale elettrico indica la posizione angolare o lineare subito dopo l’accensione. Gli encoder incrementali forniscono solamente informazione se c’è movimento. Alcuni encoder incrementali fornisco anche un segnale di riferimento, chiamato Index o Home, che si impiega come dato da cui far partire gli incrementi o i decrementi della posizione dell’albero.

Sono maggiormente impiegati gli encoder incrementali rispetto a quelli assoluti, anche se si sta invertendo questa tendenza soprattutto nelle nuove applicazioni. In molti settori come la robotica e nei sistemi di automazione si preferisce avere la posizione già in fase di accensione, senza dover prevedere una routine di azzeramento della posizione andando a trovare un punto di riferimento, che comunque prevede un movimento dell’asse interessato.

Il segnale elettrico generato dagli encoder incrementali sono due segnali A/B. Questo fa riferimento a 2 o più segnali in bassa tensione in quadratura tra loro che cambiano lo stato da alto a basso al cambiare della posizione. La direzione del movimento viene determinata tramite il flusso dei segnali A rispetto a B se sono in anticipo o se sono in ritardo. Per gli encoder assoluti il protocollo di comunicazione più comune è SSI (Synchronous Serial Interface) che tramite una comunicazione digitale a bit indicano la posizione assoluta.



Cos’è un Encoder Ottico?

In un encoder ottico è presente una sorgente luminosa che trasmette la luce verso un disco che presenta delle aperture che permettono il passaggio della luce e lo impedisce se non c’è apertura. Queste aperture o chiusure vengono chiamate “grating”o “griglia”. Un rilevatore ottico opposto al trasmettitore rileva la presenza o l’assenza di luce e genera un segnale elettrico corrispondente. Grazie alla griglia si determina lo spostamento angolare e se l’albero dell’encoder è in movimento e in quale direzione. Si possono arrivare a griglie con marcatura moto piccola, fino al micron, consentendo misure con elevato grado di precisione.

   
Figura 1 - Optical encoders use an optical sensor and an optical disk to measure angle.

Normalmente l’albero dell’encoder viene collegato meccanicamente alla parte mobile della macchina. L’albero dell’encoder ha dei cuscinetti di supporto e porta il disco ottico che è interposto tra emettitore e rilevatore. La connessione elettrica avviene tramite un cavo multicolore che fornisce l’alimentazione in corrente continua e trasporta i dati in uscita della posizione dell’encoder. La semplice interfaccia elettrica combinata alla facile reperibilità li rende facili da impiegare. Il punto debole è la sensibilità verso le vibrazioni, urti, materiali estranei e temperature estreme. Non vi è nessun avviso di un imminente errore, e questo può causare una segnalazione errata della posizione se non addirittura nessuna lettura, che può causare problemi molto rilevanti all’apparecchiatura. Quando i diametri sono di notevole dimensione si impiegano encoder ad anello; in questo caso la tolleranza tra testina di lettura ottica e la griglia ha tolleranze meccaniche molto ristrette che li rende molto sensibili verso polveri o particelle di sporco. Questi fattori scoraggiano l’impiego di encoder ottici in sistemi che richiedo alta affidabilità e sicurezza.

  • Punti di forza: Elevata risoluzione, largamente disponibile, elevata accuratezza
  • Punti di debolezza: delicati, sensibili a contaminazione esterna, possibilità di guasti importanti, range di temperatura limitato (-20°C to +70°C)


Cos’è un encoder induttivo?

Un encoder induttivo, spesso chiamato Incoder, utilizza principi induttivi per misurare la posizione di un rotore rispetto allo statore. Gli Incoder meccanicamente sono paragonabili ai resolver o agli LVD, ma la loro interfaccia elettrica è simile a un encoder ottico con un semplice alimentatore e segnale digitale in uscita.

Molti resolver tradizionali sono più simili ad un motore elettrico con avvolgimenti in rame sullo statore e un rotore metallico. L’accoppiamento induttivo sugli avvolgimenti statorici varia in base alla posizione del rotore. Anziché impiegare una tecnica costruttiva come quella impiegata nei trasformatori, gli Incoder usano circuiti stampati sia per lo statore che per il rotore, rendendoli meno ingombranti, più accurati e meno costosi da produrre.

I resolver e gli LVDT hanno dimostrato col tempo la loro affidabilità, precisione, robustezza e quindi vengo spesso impiegati in applicazioni ad alta affidabilità e sicurezza. Gli Incoder sono altrettanto facili da integrare come quelli ottici, richiedono solo un’alimentazione DC e forniscono un segnale digitale in uscita che rappresenta la posizione. Questo permette di paragonarli, in termini di vantaggi ai resolver, senza averne gli svantaggi.

Poiché gli Incoder non utilizzano componenti ottici non sono sensibili ai materiali estranei e non hanno limitazione dovute alla temperatura. Inoltre la misurazione della posizione non richiede un montaggio meccanico con alte tolleranze tra parte statorica e parte rotorica. Non necessitando di cuscinetti si ottengono anelli molto sottili e con grande foro passante che, con il peso ridotto, ne fanno una soluzione estremamente performante nei giunti rotanti, nei bracci robotizzati e negli attuatori.

 
Figura 2 - Examples of Inductive Encoders Gli Incoder sono disponibili con ampie misure sino a 600 mm di diametro, sono impiegati con successo nelle macchine utensili, sistemi aerospaziali, difesa e attrezzature mediche.
  • Punti di forza: Alta risoluzione, accuratezza, affidabilità, robustezza, lunga durata, tollerante a disallineamenti
  • Punti di debolezza: range di temperatura esteso (-100°C + 125°C)*
    *più ampio degli ottici ma non tanto quanto i resolvers


italia

Encoder Induttivi vs Encoder Capacitivi

Lunedì, 11 Settembre 2017

www.zettlex.com

Encoder Induttivi vs Encoder Capacitivi

Gli encoder capacitivi o induttivi possono sembrare, a prima vista, molto simili e gli aspetti che li differenziano possano apparire confusi. Entrambi utilizzano una tecnica di non contatto per la misurazione della posizione, e entrambi possono essere costruiti impiegando circuiti stampati. Tuttavia i principi fisici su cui si basano sono piuttosto diversi.
Questo articolo spiega queste diversità confrontandone i lati positivi e negativi che entrambe le soluzioni presentano.

Sensori Capacitivi – Principio di funzionamento

La scoperta della possibilità di immagazzinare grosse quantità di energia elettrica, è da attribuire allo scienziato Ewald George von Kleist, inventore del primo condensatore. Questo componente è formato da due piastre (o facce) conduttive separate da un materiale dielettrico, tipicamente aria, plastica o ceramica. Un semplice modello matematico del condensatore è mostrato in Figura 1.

esempio di condensatore semplice
Figura 1 - Un condensatore semplice

La permittività elettrica Ԑ, ovvero la quantità di energia elettrica trattenuta da un materiale non conduttore sottoposto ad un campo elettrico, è costituita da due parti Ԑr e Ԑ0 dove Ԑr è la permittività statica relativa (anche chiamata costante dielettrica) del materiale tra le due piastre, Ԑ0 la permittività statica nel vuoto. (Ԑ0 = 8.854E-22 F/m).

Il principio capacitivo è utilizzato in dispositivi quali telefoni, tablet, cellulari che impiegano la tecnologia touch screen, ovvero rilevano la presenza o l’assenza di un dito grazie alla variazione della costante dielettrica Ԑr che va a cambiare la capacità.

Una seconda applicazione è rappresentata dal sensore capacitivo di spostamento ovvero una riga lineare capacitiva o un encoder capacitivo rotativo; questi sensori lavorano sulla variazione di capacità tra le facce del condensatore. Come si può notare dalla Figura 1 la capacità varia in proporzione alla distanza tra le facce (d) e all’area di sovrapposizione (A). Lo spostamento può essere misurato assialmente variando d, oppure in direzione planare variando l’area di sovrapposizione A. Le facce del condensatore possono essere costruite impiegando circuiti stampati, il che permette un notevole vantaggio in termini economici. Per memorizzare qualsiasi quantità significativa di carica la dimensione d deve essere piccola rispetto all’area delle piastre. Solitamente d è 1 mm. I sensori capacitivi lineari o rotativi, sono costruiti in modo tale che lo spostamento provochi una variazione in A o in d. In altre parole una faccia è sull’elemento mobile del sensore mentre l’altra faccia è sull’elemento fisso. Mentre i 2 elementi si spostano tra loro si ha una variazione della superficie capacità C del condensatore.

Purtroppo la capacità è anche influenzata da fattori diversi dallo spostamento. Se il materiale dielettrico è circondato da aria, la sua permittività varia sia con la temperatura sia con la presenza di umidità, infatti l’acqua ha una diversa costante dielettrica rispetto all’aria; cambiando la permittività cambia di conseguenza la capacità. A meno che il materiale dielettrico non venga sigillato, i sensori capacitivi non sono adatti a lavorare in ambienti con sbalzi termici elevati o con probabilità di condensazione e/o variazioni di umidità.
La necessità intrinseca di avere una distanza tra le facce del sensore molto contenuta rispetto alle dimensioni delle facce stesse, comporta una grande precisione meccanica per l’installazione. Questo fattore implica un aumento notevole del costo di installazione; Oltretutto si dovrà tenere contro anche dell’espansione termica e dell’influenza che possono avere eventuali derivanti dalla struttura esterna al sensore che avranno ripercussioni sulla distanza tra e facce del condensatore e causando una distorsione della misura.

Inoltre l’effetto capacitivo si basa sulla conservazione della carica elettrica nel condensatore. Se il sistema attorno al sensore genera cariche elettrostaiche, queste possono influenzare negativamente la misurazione. In casi estremi il sensore non funziono affatto o, peggio ancora, il disturbo elettrostatico genererà una misurazione credibile ma errata. La messa a terra del sistema meccanico su cui viene installato il sensore, può essere una soluzione ed è indispensabile per i sensori angolari capacitivi in cui l’albero rotante genera cariche statiche derivanti dal rotolamento dei cuscinetti, dagli ingranaggi o dalle pulegge.

Sensori induttivi – Principio di funzionamento

Nel 1831, Michael Faraday, scoprì che una corrente alternata che percorre un conduttore può indurre una corrente in senso opposto in un secondo conduttore affiancato al primo. Questo principio di induzione viene ampliamente usato come base di misura della posizione e della velocità nei resolver, nei synchro e negli LVDT. La teoria di base può essere spiegata considerando 2 avvolgimenti, uno definito trasmettitore (Tx) a quale si applica una corrente alternata, ed il secondo che funge da ricevitore (Rx) nel quale viene indotta una corrente:

Legge induzione di Faraday
Figura 2 - Principio induzione di Faraday

La tensione nell’avvolgimento di ricezione è funzione dell’area delle bobine, della geometria della distanza tra le due. Tuttavia, come con i sensori capacitivi, anche per i sensori induttivi diversi fattori possono influenzare il comportamento delle bobine. La temperatura è uno di questi, ma può essere eliminato semplicemente impiegando più bobine di ricezione e calcolando la posizione dal differenziale tra i segnali ricevuti (come in un trasformatore differenziale). Di conseguenza se la temperatura cambia, l’effetto viene annullato poiché il differenziale tra i segnali ricevuti è inalterato per una data posizione.

A differenza dei sistemi con tecnologia capacitiva, quelli con tecnologia induttiva sono meno influenzati dagli agenti esterni come acqua e particelle. Poiché le bobine possono essere distanziate in modo rilevante, la precisione meccanica per l’installazione è meno importante e i due elementi, quello fisso e quello mobile hanno tolleranze di montaggio abbastanza elevate. Ciò aiuta a ridurre i costi di installazione e permette l’incapsulamento dei componenti permettendo ai sensori di resistere a sollecitazioni esterne come vibrazioni, essere immune a sostanze gassose o presenza di polvere.

I sensori induttivi forniscono una soluzione ottimale per quelle applicazioni che prevedono un alloggiamento in ambienti particolari tipici delle applicazioni per la difesa, aerospaziale e nell’industria petrolifere.

Uno dei maggiori inconvenienti dei sensori induttivi è che per la costruzione impiegano delle bobine di ferrite che devono essere costruite con particolare accuratezza per ottenere una misurazione precisa della posizione. Un numero significativo di bobine deve essere impiegato per ottenere un segnale elettrico stabile e questo li rende ingombranti, pesanti e costosi.

Si pensa che i sensori induttivi siano particolarmente sensibili a disturbi elettromagnetici ma l’impiego, con successo, dei resolver come elemento adatto per pilotare la commutazione e controllare la velocità dei motori smentisce completamente questa teoria. Sia i resolver che gli LVDT sono la soluzione per applicazioni aerospaziali o civili già da molti anni.

Un differente approccio ai sensori induttivi

Un approccio diverso ai sensori induttivi è quello di impiegare una tecnologia di stampa laminare per la realizzazione delle bobine anziché impiegare le bobine in ferrite, ed è la soluzione impiegata da Zettlex. Questo comporta che gli avvolgimenti possono essere prodotti in rame inciso o stampato su differenti varietà di pellicole in poliestere o carta oppure laminati su ceramica. In questo modo si realizzano avvolgimenti molto precisi raggiungendo una prestazione di misura molto maggiore a costi contenuti, peso degli avvolgimenti contenuto pur mantenendo inalterata la robustezza.

sensore induttivo zettlex sporco ma perfettamente funzionante con circuiti stampati multistrato
Figura 3 - Esempio di un Sensore a Induzione sporco ma perfettamente funzionante con circuiti stampati multistrato

Gli IncOder Zettlex sono dispositivi senza contatto tra i due elementi principali, ciascuno a forma di anello. L’ampio foro rende più facile il montaggio su alberi passanti, su collettori rotanti, fibre ottiche, tubi e cavi. IncOrder non richiedono un montaggio meccanico con alte tolleranze, il rotore e lo statore possono facilmente essere avvitati alle parti meccaniche della macchina. La misurazione non viene influenzata da elementi esterni e sono ideali per ambienti difficili in cui i dispositivi capacitivi potrebbero risultare inaffidabili.

In conclusione

I benefici dei tre differenti sensori sono indicati nella tabella sottostante. Si può notare che dei tre sistemi quello con approccio induttivo non tradizionale, impiegato da Zettlex, è quello che elenca il maggior numero di vantaggi.

  Capacitive Inductive (Traditional Coils) Inductive (Printed Coils)
High Resolution  x  x  x
High Repeatability   x  x  x
High Accuracy  x  x  x
Resilience to Dirt, Water or Condensation    x
Resilience to electrostatic effects   x  x
Robust EMC Operation   x  x  x
Low Thermal Drift      x
Easy to Install    ?  x
Compact  x    x
Lightweight  x    x
Economical  ?    x
italia

Encoder per controllo di velocità ultra lento

Giovedì, 13 Luglio 2017

www.zettlex.com

Encoder per controllo di velocità ultra lento
Generalmente quando si parla di Motion Control si pensa a sistemi ad alta velocità con rapidi cambiamenti di direzione. Poter controllare il moto in queste condizioni comporta sicuramente delle notevoli sfide tecniche; sfide tecniche che si presentano quando si vogliano controllare movimenti a bassissima velocità tipica ad esempio per telescopi o sistemi di puntamento, telecamere a circuito chiuso e in genere nei sistemi di sorveglianza. Questa sessione esamina le problematiche derivanti da un sistema a velocità ultra lenta sia dal punto di vista del sensore di posizione o di velocità, sia da parte del controllore di moto.



Considerando una telecamera mobile PTZ (Pan/Tilt/Zoom) a brandeggio, comunemente chiamata “Gimbal System” per video sorveglianza verso le frontiere, non è raro doversi concentrare su oggetti distanti anche 20 Km dalla telecamera. Quando l’oggetto si muove diventa complesso poterlo seguire perché il campo visivo è molto ristretto e l’obbiettivo può scomparire rapidamente.

encoder pan tilt zoom camera - zettlex

Se l’obbiettivo si muove a 20 Km/ora ad una distanza di 20 Km la telecamera dovrà ruotare a 0,05 RPM, velocità decisamente bassa. Per poter tenere l’obbiettivo all’interno dell’area visibile e centrato rispetto all’area stessa, bisogna controllare accuratamente questa bassissima velocità ed essere rapidi a seguirne i cambiamenti di direzione. Diventa indispensabile impiegare encoder con risoluzione da 18 a 22 bit con risoluzioni pari 4194304 counts/giro, tali da garantire comunque dei movimenti omogenei anche a bassissime velocità.

L’approccio tradizionale è quello di utilizzare un encoder sul motore accoppiato ad un riduttore. Maggiore è il rapporto di riduzione maggiore sarà la risoluzione dell’encoder vista dal controllo, proporzionalmente il sistema complessivo avrà minore dinamica e reattività, oltre ad inserire inevitabilmente giochi meccanici. Tutto questo porta all’impossibilità di seguire oggetti in movimento, se non quelli posti ad una distanza non elevata. L’alternativa e di utilizzare un encoder ad alta risoluzione direttamente sull’albero di uscita del riduttore per la chiusura del loop di posizione, contemporaneamente a quello posto sul motore responsabile del loop di velocità; il tipo di controllo viene definito dual-loop e garantisce che il backlash del riduttore vengano eliminati ottenendo un sistema altamente dinamico. Questo approccio viene impiegato grazie allo sviluppo avvenuto nei sensori di posizione, ora disponibili, ad alta risoluzione accompagnato allo sviluppo di Motion Control altamente performanti.


Encoder tradizionali ad alta risoluzione

Tradizionalmente quando si parla di encoder ad alta risoluzione, ovvero superiori a 18 bit equivalenti a 1000000 di counts/giro, si individuano soluzioni con resolver, encoder ottici o capacitivi. I resolver di alta risoluzione sono notoriamente costosi e possono presentare problemi ingegneristici a causa degli ingombri, del peso e delle tolleranze meccaniche di montaggio, molto stringenti. Gli encoder ottici o capacitivi ad anello sono altrettanto costosi e richiedo meccaniche di precisione per essere impiegati. A differenza dei resolver, che sono molto robusti, gli encoder ottici sono molto sensibili alle vibrazioni e agli urti impiegando dischi di vetro, inoltre la temperatura di esercizio è molto limitata. Sia le versioni ottiche che capacitive soffrono di problemi di affidabilità in presenza di polvere o condensa. I sensori ottici di alta risoluzione, impiegando dischi di vetro incisi, sono particolarmente sensibili a corpi estranei.


Encoder induttivi di nuova generazione

Le tradizionali tecniche per raggiungere alte risoluzioni hanno delle limitazioni, la richiesta di soluzioni innovative è sempre più pressante. Una risposta a queste richieste viene con la nuova generazione di encoder induttivi che offrono risoluzioni sino a 4 milioni di conteggi per giro (22 bit). Gli encoder induttivi, a volte definiti col termine “incOders”, presentano la stessa robustezza meccanica dei resolver, offrono alte risoluzioni senza parti in contatto, possono lavorare in ambienti sporchi essendo immuni a polveri o a corpi estranei e, in fine, possono lavorare in presenza di liquidi o di condensa; sono la soluzione per i progettisti per encoder che debbano lavorare in ambienti difficili, senza doversi occupare di chiuderli in contenitori stagni come invece è necessario se si impiegano encoder ottici o capacitivi. Questi nuovi sensori di posizione possono facilmente essere impiegati con i controlli di nuova generazione Galil. Tempi di campionamento inferiori a 100µsec permettono di controllare in modo ottimale motori che ruotano a bassissime velocità e, grazie alla banda passante di 20 MHz, si possono ottenere contemporaneamente un ottimo sistema anche a velocità elevate. L’integrazione del controllo “dual loop” e particolari filtri antirisonanti agevolano una messa in funzione rapida ed efficace.
italia
[12  >>  
pronto a saperne di più?
Lingua: IT - EN